

kpler

Solar Curtailment in Europe

Drivers, trends, and forecasts

9th July 2025

QR code to download the
solar curtailment report

Kpler Power Data Points

Kpler creates different types of data products, including post-process market data, proprietary AI-driven forecasts, and market analysis services.

Power market data

Generation (asset-level and country-level)

Availabilities (asset-level and country-level)

Outages

Interconnections (import, export)

Sensitivity (Hourly bid curves and block orders)

Demand

Prices (balancing, intraday, spot, and futures)

Weather data + forecasts (temperature, radiation, precipitation, and more)

Proprietary forecasts

Demand and residual demand

Wind and solar generation

Hydro (run of river) generation

Availability forecasts including nuclear

Power prices (balancing, intraday, spot, futures, hourly forward curves, and long term - year 2050)

Gas and carbon futures

France red Tempo days

Price trend signals (power, gas, and carbon prices)

Market analysis

Power Market Outlook report

Custom forecasts and scenarios

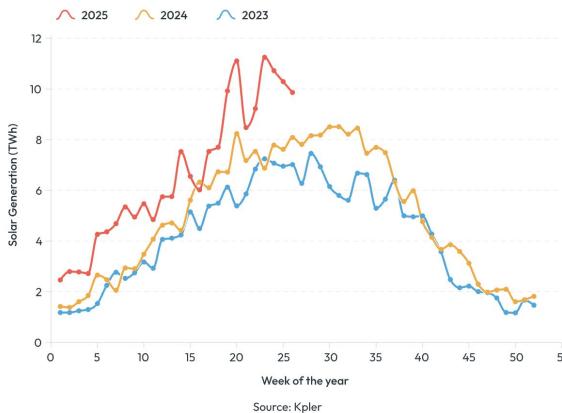
Technical reports

Market insights

Agenda

What causes solar curtailment (SC)?

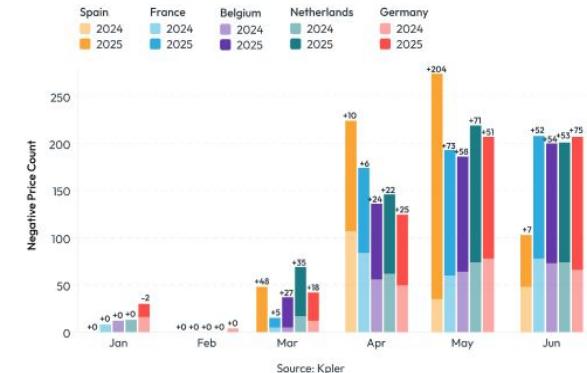
How can power systems adapt to limit SC?


What is the impact of SC?

Conclusion

Sustained European solar generation growth is being jeopardized by stagnant power demand and limited grid flexibility

EU Solar Power Generation (TWh)


+40% EU solar generation¹

EU demand (TWh)

+1% EU demand¹

Monthly negative price hours occurrences (2024 vs 2025)

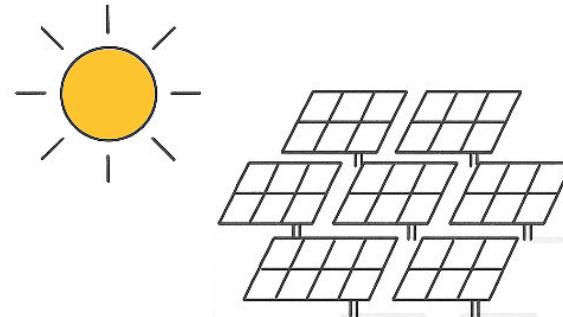
+80% negative price hours²

¹ 2025 vs 2024, January-June

² The % increase accounts for BE, DE, ES, FR, NL day-ahead markets

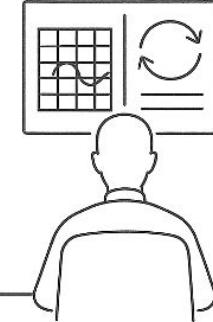
Sources: ENTSO-E, EEX, TSOs, Kpler platinum, and official national sources or institutes (ex. Netztransparenz)

Solar curtailment is the deliberate reduction of electricity generated from solar assets


Solar curtailment can be **economic**, driven by producers and market auctions, or **technical**, triggered by TSOs in real-time

Economic curtailment

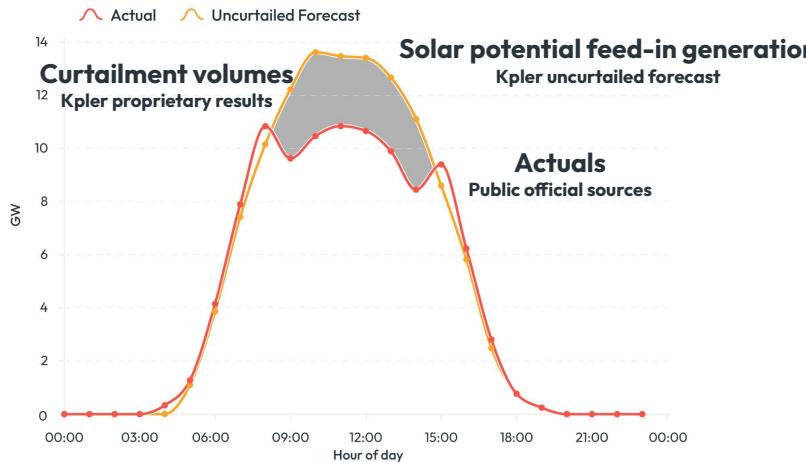
Asset manager



Cause	Market price, mostly negative prices
Decision-maker	Asset manager
Decision timing	Day-ahead or intra-day, based on price forecasts
Revenue stream	None, unless specifically linked to subsidy design

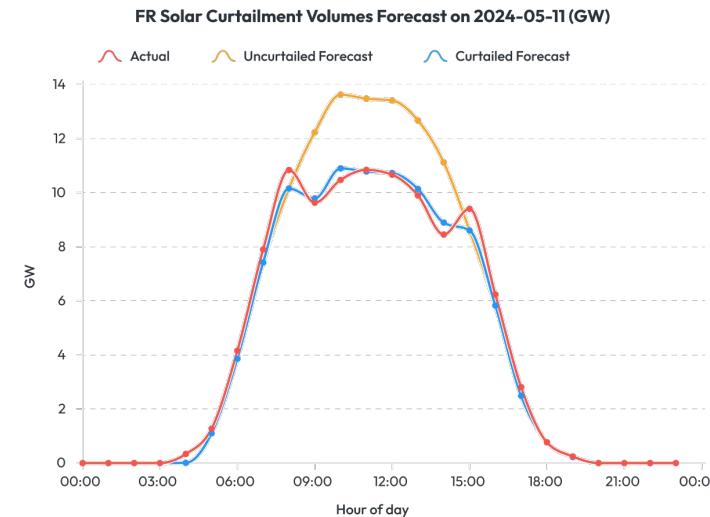
Technical curtailment

TSO (Control room)



Cause	Physical constraints or grid stability needs (congestion, voltage, frequency issues)
Decision-maker	System operators
Decision timing	Real-time, based on grid conditions
Revenue stream	Varies by regulation, but mostly it is the TSO that fully or partially compensates the asset to curtail.

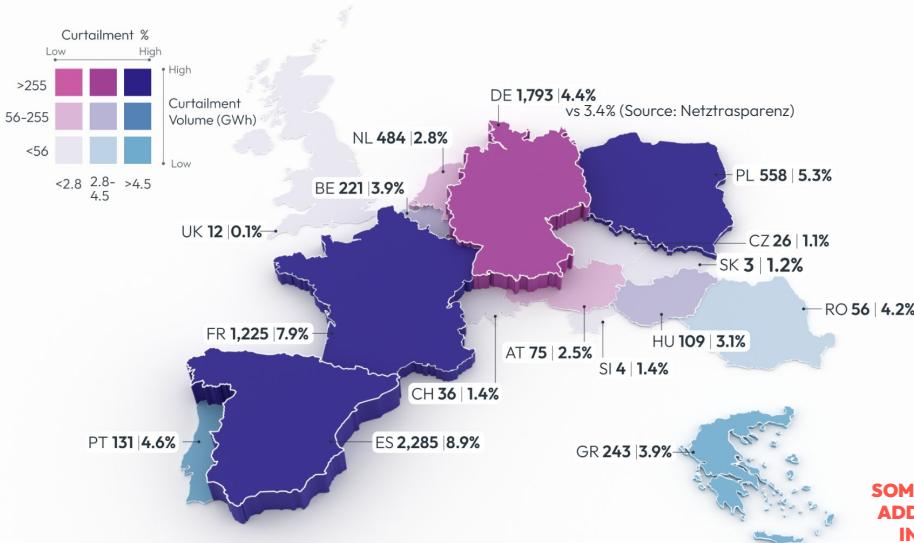
Solar curtailment is defined as the delta between grid potential feed-in and actual generation


We use the same methodology, but differentiate **historical curtailment volumes estimates** with **proprietary ML-based day ahead-forecasts**

Historical Volumes

Sources: ENTSO-E, EEX, TSOs, Kpler platinum, and official national sources

Day-Ahead Forecasts



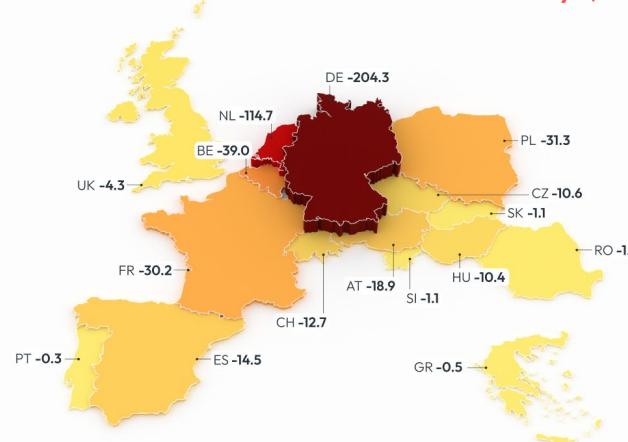
Sources: Kpler

Kpler day-ahead curtailed forecasts predict the primary driver: economic curtailment

Solar curtailment is accelerating in 2025, with Kpler tracking around 7.3 TWh volumes as of June 27

Solar Curtailment in Europe (GWh) as of June 27 (Coloured by Curtailment Volume-Curtailment Share)

SOME KPLER
ADDITIONS
IN 2025

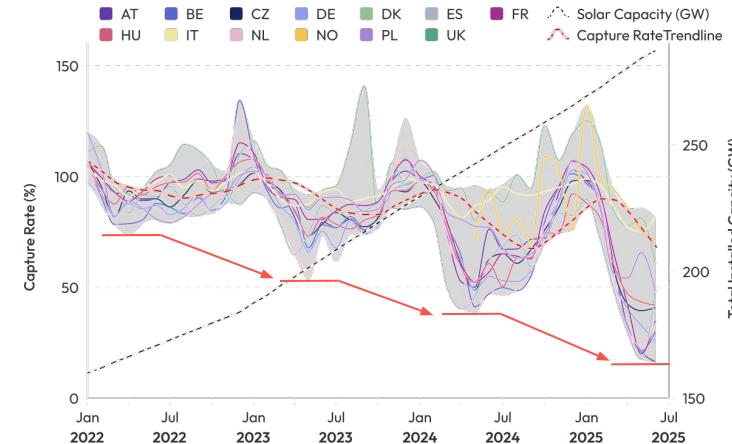

Country	Curtailment share in 2024 (%)	Curtailment share in 2025 (%)	Delta ¹ Δ (%)
Spain	10.9	8.9	▼ 2
France	4.4	7.9	▲ 3.5
Germany	4.1	4.4	▲ 0.3
Belgium	2.4	3.9	▲ 1.5
Poland	1.2	5.3	▲ 3.9
Netherlands	<1	2.8	▲ 2.7
Switzerland	<1	1.4	▲ 1.3
Czechia	<1	1.1	▲ 1
Austria	0	2.5	▲ 2.5
Greece	—	3.9	—
Hungary	—	3.1	—
Portugal	—	4.6	—
Romania	—	4.2	—

¹ 2024 vs 2025 volumes and delta, January to June 27

$$\text{Solar curtailment (\%)} = \sum_{h=0}^t \frac{\text{Solar Curtailed Output}_h}{\text{Solar Potential for Grid Feed-in}(\text{Curtailed} + \text{Delivered})_h}$$

Germany and the Netherlands lead in day-ahead solar value losses, reflecting deep price collapses and must-run solar volume, unlike more flexible systems in France and Spain

**EU Solar Day-Ahead Market Value Loss (M€)
as of July 4, 2025**



Source: Kpler

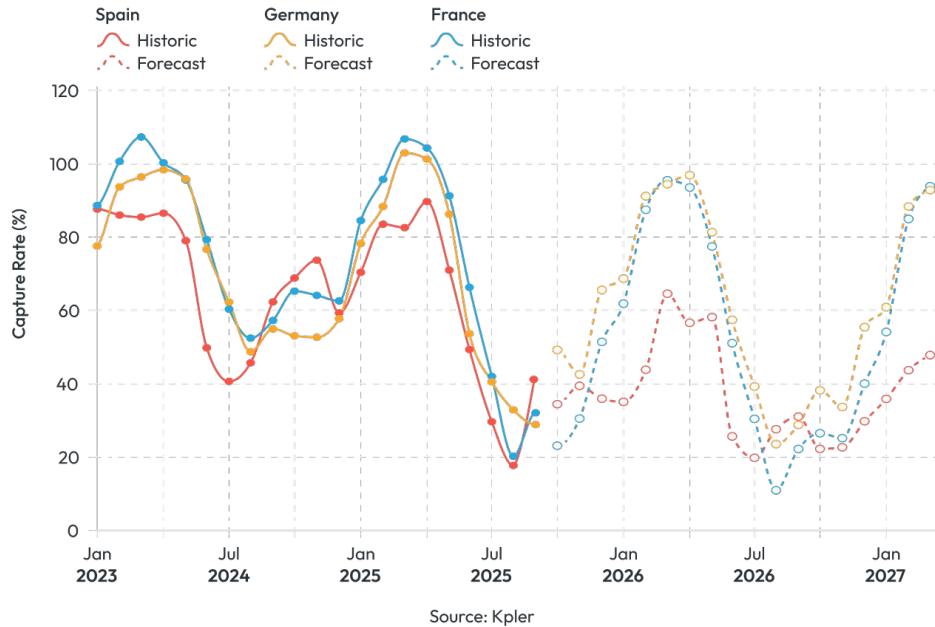
450+ M€ loss tracked in the CORE region

$$\text{Solar market value loss (M€)} = \sum_{h=0}^t \mathbf{1}_{\{Price_h < 0\}} \cdot (DA \text{ price} \cdot Solar \text{ Actuals})_h$$

EU Solar Capture Rate

Source: Kpler

20% yearly floor decrease in EU capture rates over 4 years


$$\text{Solar Capture Rate (\%)} = \frac{\text{Average Day Ahead Solar Revenue}}{\text{Average Day Ahead Price}}$$

Kpler expects solar capture rates to dip to 10% in 2026

Our proprietary curtailment, capture price and rate forecasts offer a forward-looking view in the short and long term.

LT Solar Capture Rate Forecasts

Kpler Solar Capture Rate Forecasts

Source: Kpler

A shift from a paradigm of production maximisation to value optimisation is required

While **causes are similar**, there is **no silver bullet to mitigate solar curtailment**

Major EU countries curtailing solar: origins and roadmaps

Feature	France	Germany	Spain
Dominant Power Source (% generation in 2024)	Nuclear (67%)	Solar and Wind (RES) (46%)	Balanced - Fossil gas, solar, wind, nuclear, hydro (~20% each)
Key Flexibility Source	Nuclear modulation & Hydro	Natural Gas	Hydropower & CCGTs
Primary Curtailment Driver	<ul style="list-style-type: none"> Abundant nuclear fleet degree of inflexibility Uncontrolled small-scale solar injection 	<ul style="list-style-type: none"> High simultaneous wind and solar generation Uncontrolled small-scale solar injection North-South transmission congestion 	<ul style="list-style-type: none"> Geographical mismatch between solar generation and demand centers Transmission bottlenecks
Historical Solar Subsidy Scheme	'Obligation d'achat' (Feed-in Tariff)	EEG Feed-in Tariff	Royal Decree 436/2004 (Feed-in Tariff)
Current Policy Focus	<ul style="list-style-type: none"> Transition to 'Complément de Rémunération' (CR) S21 amendment 	<ul style="list-style-type: none"> EEG amendment Gas reserve fleet 'Redispatch 2.0' Solar Package I HVDC transmission "highways" connecting northern generation to southern demand (ex. SuedLink) Innovation tenders to promote RES hybrid projects 	<ul style="list-style-type: none"> Royal Decree-Law 7/2025 FEDER 21-27 auction Improved interconnection with France and Italy

California's CAISO: a global benchmark for solar integration

With 13.4 GW of BESS capacity and 93% of curtailment coming from solar in 2024, CAISO takes a pragmatic approach: **curtailment is a modelled, least-cost feature**, not a system failure.

Solutions combining demand response, battery deployment and market solutions are being rolled out, but progress is too slow

Boosting baseload demand

 Recovering **industrial demand**

 Investing strategically in **data centers**.

 Electrifying heating and transport sectors.

Investing in BESS

 Promoting **standalone or hybrid BESS projects** and co-located storage retrofits **to tackle grid congestion**, while optimizing for CAPEX-intensive grid infrastructure investments.

 On track

 Lagging behind

Accelerating deployment of flexibility resources

 Industrial dynamic pricing

 Demand response services (ex. V2G, dynamic water heating)

 Consumer behaviour tools (ex. Tibber and Octopus Energy services)

Modernizing grid infrastructure

 Shifting from grid following inverters to **grid forming inverters** enables “passive generators” to become active grid stabilizers, while unlocking new revenue streams.

Scheduling curtailment and “operating windows” for assets

 Acknowledging **some curtailment is cheaper than overbuilding transmission lines and storage assets**.

 Establishing operating windows contractually in advance, to handle highly unlikely simultaneous peaks.

Phasing out feed-in tariffs

 Shifting to a **feed-in premium model**

02

Q&A

**QR code to download the
solar curtailment report**